Search results
Results From The WOW.Com Content Network
1,2-Butanediol is a byproduct of the production of 1,4-butanediol from butadiene. [8] It is also a byproduct of the catalytic hydrocracking of starches and sugars such as sorbitol to ethylene glycol and propylene glycol. [9] It can also be obtained from the dihydroxylation of but-1-ene by OsO 4.
The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see compressibility factor). In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect.
2-methylpropane-1,2-diol; 2-methylpropane-1,3-diol; and one unstable geminal diol: 2-methylpropane-1,1-diol (not a glycol), hydrate of 2-methylpropanal (isobutyraldehyde) These three methylpropanediols are structural isomers of butanediols. They are not chiral.
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.