When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    One equation used to analyze biological exponential growth uses the birth and death rates in a population. If, in a hypothetical population of size N, the birth rates (per capita) are represented as b and death rates (per capita) as d, then the increase or decrease in N during a time period t will be = ()

  3. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function () = grows at an ever increasing rate, but is much slower than growing

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ⁠ ′ = ⁠.

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    For example, if the initial population of the assembly, N(0), is 1000, then the population at time , (), is 368. A very similar equation will be seen below, which arises when the base of the exponential is chosen to be 2, rather than e. In that case the scaling time is the "half-life".

  6. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...

  7. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the reduction of a quantity as a function of the number of half-lives elapsed.

  8. e-folding - Wikipedia

    en.wikipedia.org/wiki/E-folding

    In science, e-folding is the time interval in which an exponentially growing quantity increases or decreases by a factor of e; [1] it is the base-e analog of doubling time. This term is often used in many areas of science, such as in atmospheric chemistry , medicine , theoretical physics , and cosmology .

  9. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...