Search results
Results From The WOW.Com Content Network
Hypercapnia (from the Greek hyper, "above" or "too much" and kapnos, "smoke"), also known as hypercarbia and CO 2 retention, is a condition of abnormally elevated carbon dioxide (CO 2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs.
The hyperventilation is self-promulgating as rapid or deep breathing causes carbon dioxide levels to fall below healthy levels, and respiratory alkalosis (high blood pH) develops. This makes the symptoms worse, which causes the person to breathe even faster, which then, further exacerbates the problem.
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as ...
Hyperventilation is irregular breathing that occurs when the rate or tidal volume of breathing eliminates more carbon dioxide than the body can produce. [ 1 ] [ 2 ] [ 3 ] This leads to hypocapnia , a reduced concentration of carbon dioxide dissolved in the blood.
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...
In a healthy person during sleep, breathing is regular so oxygen levels and carbon dioxide levels in the bloodstream stay fairly constant: [5] After exhalation, the blood level of oxygen decreases and that of carbon dioxide increases. Exchange of gases with a lungful of fresh air is necessary to replenish oxygen and rid the bloodstream of built ...
Blood gases of a patient with Kussmaul breathing will show a low partial pressure of CO 2 in conjunction with low bicarbonate because of a forced increased respiration (blowing off the carbon dioxide). Base excess is severely negative. The patient feels an urge to breathe deeply, an "air hunger", and it appears almost involuntary.
CNH is the human body's response to reduced carbon dioxide levels in the blood. This reduction in carbon dioxide is caused by contraction of cranial arteries from damage caused by lesions in the brain stem. However, the mechanism by which CNH arises as a result from these lesions is still very poorly understood.