When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into its polar line and each line in the plane into its pole.

  3. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    In the general projective plane case where duality means plane duality, the definitions of polarity, absolute elements, pole and polar remain the same. Let P denote a projective plane of order n. Counting arguments can establish that for a polarity π of P: [17] The number of non-absolute points (lines) incident with a non-absolute line (point ...

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

  6. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be performed in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem.

  7. Polar point group - Wikipedia

    en.wikipedia.org/wiki/Polar_point_group

    In geometry, a polar point group is a point group in which there is more than one point that every symmetry operation leaves unmoved. [1] The unmoved points will constitute a line, a plane, or all of space. While the simplest point group, C 1, leaves all points invariant, most polar point groups will move some, but not all points. To describe ...

  8. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point. The concept of a tangent is one of the most fundamental notions in differential geometry and has been extensively generalized; see Tangent space .

  9. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Draw the normal to that plane at the centre: it intersects the surface at two points and the point that is on the same side of the plane as A is (conventionally) termed the pole of A and it is denoted by A'. The points B' and C' are defined similarly. The triangle A'B'C' is the polar triangle corresponding to triangle ABC.