When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  3. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    The coordinates of P ′ after the active transformation relative to the original coordinate system are the same as the coordinates of P relative to the rotated coordinate system. Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a ...

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Some transformations that are non-linear on an n-dimensional Euclidean space R n can be represented as linear transformations on the n+1-dimensional space R n+1. These include both affine transformations (such as translation) and projective transformations. For this reason, 4×4 transformation matrices are widely used in 3D computer graphics.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If a left-handed Cartesian coordinate system is used, with x directed to the right but y directed down, R(θ) is clockwise. Such non-standard orientations are rarely used in mathematics but are common in 2D computer graphics, which often have the origin in the top left corner and the y-axis down the screen or page. [2]

  7. Graphics pipeline - Wikipedia

    en.wikipedia.org/wiki/Graphics_pipeline

    The computer graphics pipeline, also known as the rendering pipeline, or graphics pipeline, is a framework within computer graphics that outlines the necessary procedures for transforming a three-dimensional (3D) scene into a two-dimensional (2D) representation on a screen. [1]

  8. Scaling (geometry) - Wikipedia

    en.wikipedia.org/wiki/Scaling_(geometry)

    In projective geometry, often used in computer graphics, points are represented using homogeneous coordinates. To scale an object by a vector v = (v x, v y, v z), each homogeneous coordinate vector p = (p x, p y, p z, 1) would need to be multiplied with this projective transformation matrix:

  9. 2D computer graphics - Wikipedia

    en.wikipedia.org/wiki/2D_computer_graphics

    If a left-handed Cartesian coordinate system is used, with x directed to the right but y directed down, R(θ) is clockwise. Such non-standard orientations are rarely used in mathematics but are common in 2D computer graphics, which often have the origin in the top left corner and the y-axis down the screen or page. [2]