When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Iron(III) oxide - Wikipedia

    en.wikipedia.org/wiki/Iron(III)_oxide

    Iron(III) oxide is insoluble in water but dissolves readily in strong acid, e.g., hydrochloric and sulfuric acids. It also dissolves well in solutions of chelating agents such as EDTA and oxalic acid. Heating iron(III) oxides with other metal oxides or carbonates yields materials known as ferrates (ferrate (III)): [18] ZnO + Fe 2 O 3 → Zn(FeO ...

  3. Rust - Wikipedia

    en.wikipedia.org/wiki/Rust

    Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe 2 O 3 ·nH 2 O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH) 3 ), and is typically associated with the corrosion of refined iron .

  4. Schikorr reaction - Wikipedia

    en.wikipedia.org/wiki/Schikorr_reaction

    The Schikorr reaction can occur in the process of anaerobic corrosion of iron and carbon steel in various conditions. Anaerobic corrosion of metallic iron to give iron(II) hydroxide and hydrogen: 3 (Fe + 2 H 2 O → Fe(OH) 2 + H 2) followed by the Schikorr reaction: 3 Fe(OH) 2 → Fe 3 O 4 + 2 H 2 O + H 2. give the following global reaction:

  5. Fenton's reagent - Wikipedia

    en.wikipedia.org/wiki/Fenton's_reagent

    The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.

  6. Iron-oxidizing bacteria - Wikipedia

    en.wikipedia.org/wiki/Iron-oxidizing_bacteria

    The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The photoferrotrophic bacteria use Fe 2+ as electron donor and the energy from light to assimilate CO 2 into biomass through the Calvin Benson-Bassam cycle (or rTCA cycle) in a neutrophilic environment (pH 5.5-7.2), producing Fe 3+ oxides as a waste ...

  7. Decarburization - Wikipedia

    en.wikipedia.org/wiki/Decarburization

    Electrical steel is one material that uses decarburization in its production. To prevent the atmospheric gases from reacting with the metal itself, electrical steel is annealed in an atmosphere of nitrogen, hydrogen, and water vapor, where oxidation of the iron is specifically prevented by the proportions of hydrogen and water vapor so that the only reacting substance is carbon being oxidized ...

  8. Iron compounds - Wikipedia

    en.wikipedia.org/wiki/Iron_compounds

    Iron is by far the most reactive element in its group; it is pyrophoric when finely divided and dissolves easily in dilute acids, giving Fe 2+. However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid. [10]

  9. Iron cycle - Wikipedia

    en.wikipedia.org/wiki/Iron_cycle

    Iron reaches the atmosphere through volcanism, [8] aeolian activity, [9] and some via combustion by humans. In the Anthropocene, iron is removed from mines in the crust and a portion re-deposited in waste repositories. [4] [6] The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere.