Search results
Results From The WOW.Com Content Network
Several different types of pump impellers Flexible impeller of cooling system pump of an outboard engine (1 euro cent coin for comparison, diameter 16.25 mm). An impeller is a rotating component of a centrifugal pump that accelerates fluid outward from the center of rotation, thus transferring energy from the motor that drives the pump to the fluid being pumped.
The simplest inlet to a centrifugal compressor is typically a simple pipe. Depending upon its use/application inlets can be very complex. They may include other components such as an inlet throttle valve, a shrouded port, an annular duct (see Figure 1.1), a bifurcated duct, stationary guide vanes/airfoils used to straight or swirl flow (see Figure 1.1), movable guide vanes (used to vary pre ...
Euler’s pump and turbine equations can be used to predict the effect that changing the impeller geometry has on the head. Qualitative estimations can be made from the impeller geometry about the performance of the turbine/pump. This equation can be written as rothalpy invariance: =
A centrifugal pump containing two or more impellers is called a multistage centrifugal pump. The impellers may be mounted on the same shaft or on different shafts. At each stage, the fluid is directed to the center before making its way to the discharge on the outer diameter. For higher pressures at the outlet, impellers can be connected in series.
A rotodynamic pump is a kinetic machine in which energy is continuously imparted to the pumped fluid by means of a rotating impeller, propeller, or rotor, in contrast to a positive-displacement pump in which a fluid is moved by trapping a fixed amount of fluid and forcing the trapped volume into the pump's discharge. [1]
Quizlet is a multi-national American company that provides tools for studying and learning. [1] Quizlet was founded in October 2005 by Andrew Sutherland, who at the time was a 15-year old student, [ 2 ] and released to the public in January 2007. [ 3 ]
Fig 1. Ideal and Actual velocity triangles at impeller exit. Mathematically, the Slip factor denoted by 'σ' is defined as the ratio of the actual & ideal values of the whirl velocity components at the exit of the impeller. The ideal values can be calculated using an analytical approach while the actual values should be observed experimentally.
The affinity laws are useful as they allow the prediction of the head discharge characteristic of a pump or fan from a known characteristic measured at a different speed or impeller diameter. The only requirement is that the two pumps or fans are dynamically similar, that is, the ratios of the fluid forced are the same.