Search results
Results From The WOW.Com Content Network
These surfaces all have constant Gaussian curvature of 1, but, for either have a boundary or a singular point. do Carmo also gives three different examples of surface with constant negative Gaussian curvature, one of which is pseudosphere. [4] There are many other possible bounded surfaces with constant Gaussian curvature.
It determines whether a surface is locally convex (when it is positive) or locally saddle-shaped (when it is negative). Gaussian curvature is an intrinsic property of the surface, meaning it does not depend on the particular embedding of the surface; intuitively, this means that ants living on the surface could determine the Gaussian curvature ...
In geometry, a pseudosphere is a surface with constant negative Gaussian curvature.. A pseudosphere of radius R is a surface in having curvature −1/R 2 at each point. Its name comes from the analogy with the sphere of radius R, which is a surface of curvature 1/R 2.
Asymptotic directions can only occur when the Gaussian curvature is negative (or zero). There are two asymptotic directions through every point with negative Gaussian curvature, bisected by the principal directions. There is one or infinitely many asymptotic directions through every point with zero Gaussian curvature.
The Gaussian curvature of the surface is then given by the second order deviation of the metric at the point from the Euclidean metric. In particular the Gaussian curvature is an invariant of the metric, Gauss's celebrated Theorema Egregium. A convenient way to understand the curvature comes from an ordinary differential equation, first ...
The curvature radius is r = a cot x / y . A great implication that the tractrix had was the study of its surface of revolution about its asymptote: the pseudosphere. Studied by Eugenio Beltrami in 1868, [2] as a surface of constant negative Gaussian curvature, the pseudosphere is a local model of hyperbolic geometry.
In the case of two-dimensional manifolds, negativity of the Ricci curvature is synonymous with negativity of the Gaussian curvature, which has very clear topological implications. There are very few two-dimensional manifolds which fail to admit Riemannian metrics of negative Gaussian curvature.
It is a connected surface, which has a negative Gaussian curvature at every point. This implies near every point the intersection of the hyperboloid and its tangent plane at the point consists of two branches of curve that have distinct tangents at the point.