When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    It determines whether a surface is locally convex (when it is positive) or locally saddle-shaped (when it is negative). Gaussian curvature is an intrinsic property of the surface, meaning it does not depend on the particular embedding of the surface; intuitively, this means that ants living on the surface could determine the Gaussian curvature ...

  4. Pseudosphere - Wikipedia

    en.wikipedia.org/wiki/Pseudosphere

    In geometry, a pseudosphere is a surface with constant negative Gaussian curvature.. A pseudosphere of radius R is a surface in having curvature −1/R 2 at each point. Its name comes from the analogy with the sphere of radius R, which is a surface of curvature 1/R 2.

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The Gaussian curvature of the surface is then given by the second order deviation of the metric at the point from the Euclidean metric. In particular the Gaussian curvature is an invariant of the metric, Gauss's celebrated Theorema Egregium. A convenient way to understand the curvature comes from an ordinary differential equation, first ...

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    In the case of two-dimensional manifolds, negativity of the Ricci curvature is synonymous with negativity of the Gaussian curvature, which has very clear topological implications. There are very few two-dimensional manifolds which fail to admit Riemannian metrics of negative Gaussian curvature.

  7. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    From left to right: a surface of negative Gaussian curvature (hyperboloid), a surface of zero Gaussian curvature (), and a surface of positive Gaussian curvature ().In higher dimensions, a manifold may have different curvatures in different directions, described by the Riemann curvature tensor.

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  9. Tractrix - Wikipedia

    en.wikipedia.org/wiki/Tractrix

    The curvature radius is r = a cot ⁠ x / y ⁠. A great implication that the tractrix had was the study of its surface of revolution about its asymptote: the pseudosphere. Studied by Eugenio Beltrami in 1868, [2] as a surface of constant negative Gaussian curvature, the pseudosphere is a local model of hyperbolic geometry.