Search results
Results From The WOW.Com Content Network
A displacement field is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. The distance between any two particles changes if and only if deformation has occurred. If displacement occurs without deformation, then it is a rigid-body displacement.
A change in the configuration of a continuum body can be described by a displacement field. A displacement field is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. The distance between any two particles changes if and only if deformation has ...
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
The determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis. In the above figure, it can be seen that the compressive loading (indicated by the arrow) has caused deformation in the cylinder so that the original shape (dashed lines) has changed ...
A displacement field is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. It is convenient to do the analysis of deformation or motion of a continuum body in terms of the displacement field, In general, the displacement field is expressed in ...
The electric displacement field "D" is defined as +, where is the vacuum permittivity (also called permittivity of free space), E is the electric field, and P is the (macroscopic) density of the permanent and induced electric dipole moments in the material, called the polarization density.
A table of displacement components corresponding the terms in the Airy stress function for the Michell solution is given below. In this table κ = { 3 − 4 ν f o r p l a n e s t r a i n 3 − ν 1 + ν f o r p l a n e s t r e s s {\displaystyle \kappa ={\begin{cases}3-4~\nu &{\rm {for~plane~strain}}\\{\cfrac {3-\nu }{1+\nu }}&{\rm {for~plane ...
The only displacement field that is allowed by a compatible plane strain field is a plane displacement field, i.e., = (,) . 3-dimensions. In three dimensions, in ...