When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    It can therefore be important that considerations of computation efficiency for such problems extend to all of the auxiliary quantities required for such analyses, and are not restricted to the formal solution of the linear least squares problem. Matrix calculations, like any other, are affected by rounding errors. An early summary of these ...

  3. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.

  4. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b', where b' is the projection of b onto the column space of A. The best ...

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the primal problem as: Maximize c T x subject to Ax ≤ b, x ≥ 0; with the corresponding symmetric dual problem,

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    In operations research, the Big M method is a method of solving linear programming problems using the simplex algorithm.The Big M method extends the simplex algorithm to problems that contain "greater-than" constraints.

  8. Cyclic reduction - Wikipedia

    en.wikipedia.org/wiki/Cyclic_reduction

    Cyclic reduction is a numerical method for solving large linear systems by repeatedly splitting the problem. Each step eliminates even or odd rows and columns of a matrix and remains in a similar form. The elimination step is relatively expensive but splitting the problem allows parallel computation.

  9. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    A nonlinear hyperbolic conservation law is defined through a flux function : + (()) =. In the case of () =, we end up with a scalar linear problem.Note that in general, is a vector with equations in it.