Search results
Results From The WOW.Com Content Network
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.
In organic chemistry, the oxymercuration reaction is an electrophilic addition reaction that transforms an alkene (R 2 C=CR 2) into a neutral alcohol. In oxymercuration, the alkene reacts with mercuric acetate (AcO−Hg−OAc) in aqueous solution to yield the addition of an acetoxymercury (−HgOAc) group and a hydroxy (−OH) group across the ...
For many years, the stereochemistry of the Wittig reaction, in terms of carbon-carbon bond formation, had been assumed to correspond directly with the Z/E stereochemistry of the alkene products. However, certain reactants do not follow this simple pattern. Lithium salts can also exert a profound effect on the stereochemical outcome. [8]
The addition of Grignard reagents to alkynes is facilitated by a catalytic amount of copper halide. Transmetalation to copper and carbocupration are followed by transmetalation of the product alkene back to magnesium. The addition is syn unless a coordinating group is nearby in the substrate, in which case the addition becomes anti and yields ...
The addition of singlet carbenes to alkenes is stereospecific in that the geometry of the alkene is preserved in the product. For example, dibromocarbene and cis-2-butene yield cis-2,3-dimethyl-1,1-dibromocyclopropane, whereas the trans isomer exclusively yields the trans cyclopropane. [4]
The rule makes no generalizations about the stereochemistry of the newly formed alkene, but only the regiochemistry of the elimination reaction. While effective at predicting the favored product for many elimination reactions, Zaytsev's rule is subject to many exceptions.
Although the mechanisms of each of these reactions differ somewhat, in each case the chiral catalyst or reagent must be involved in the enantio determining conjugate addition step. Cis-epoxides are difficult to access using nucleophilic epoxidation methods. Nearly all nucleophilic epoxidations of cis olefins afford trans epoxides.
The cyclopropanation of N-substituted alkenes is made complicated by N-alkylation as a competing pathway. This can be circumvented by adding a protecting group to nitrogen, however the addition of electron-withdrawing groups decreases the nucleophilicity of the alkene, lowering yield.