When.com Web Search

  1. Ad

    related to: degree of curvature radius meaning in geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The mean curvature is an extrinsic measure of curvature equal to half the sum of the principal curvatures, ⁠ k 1 + k 2 / 2 ⁠. It has a dimension of length −1. Mean curvature is closely related to the first variation of surface area. In particular, a minimal surface such as a soap film has mean curvature zero and a soap bubble has

  4. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  5. Track geometry - Wikipedia

    en.wikipedia.org/wiki/Track_geometry

    In North America, the measurement of curvature is expressed in degree of curvature. This is done by having a chord of 100 feet (30.48 m) connecting to two points on an arc of the reference rail, then drawing radii from the center to each of the chord's end points. The angle between the radii lines is the degree of curvature. [10]

  6. Geometric design of roads - Wikipedia

    en.wikipedia.org/wiki/Geometric_design_of_roads

    Circular curves are defined by radius (tightness) and deflection angle (extent). The design of a horizontal curve entails the determination of a minimum radius (based on speed limit), curve length, and objects obstructing the view of the driver. [4] Using AASHTO standards, an engineer works to design a road that is safe and comfortable.

  7. Meridian arc - Wikipedia

    en.wikipedia.org/wiki/Meridian_arc

    On an ellipsoid of revolution, for short meridian arcs, their length can be approximated using the Earth's meridional radius of curvature and the circular arc formulation. For longer arcs, the length follows from the subtraction of two meridian distances , the distance from the equator to a point at a latitude φ .

  8. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    If the derivative of curvature κ'(t) is zero, then the osculating circle will have 3rd-order contact and the curve is said to have a vertex. The evolute will have a cusp at the center of the circle. The sign of the second derivative of curvature determines whether the curve has a local minimum or maximum of curvature.

  9. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    Radius of curvature R c: Radius of circular curve at the end of the spiral θ: Angle of curve from beginning of spiral (infinite R) to a particular point on the spiral. This can also be measured as the angle between the initial tangent and the tangent at the concerned point. θ s: Angle of full spiral curve L, s