When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  3. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...

  4. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900.

  5. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    where ⁠ D / Dt ⁠ is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and published in his Principia in 1687, [2] which was the first problem in the field to be clearly formulated and correctly solved, and was one of the most difficult problems tackled by variational methods prior to the twentieth century.

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    For example, in the manifold case, the derivative sends a C r-manifold to a C r−1-manifold (its tangent bundle) and a C r-function to its total derivative. There is one requirement for this to be a functor, namely that the derivative of a composite must be the composite of the derivatives. This is exactly the formula D(f ∘ g) = Df ∘ Dg.

  9. Fluid kinematics - Wikipedia

    en.wikipedia.org/wiki/Fluid_kinematics

    The portion of the material derivative represented by the spatial derivatives is called the convective derivative. It accounts for the variation in fluid property, be it velocity or temperature for example, due to the motion of a fluid particle in space where its values are different.