When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method. This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The Gauss–Legendre method with s stages has order 2s, so its stability function is the Padé approximant with m = n = s. It follows that the method is A-stable. [34] This shows that A-stable Runge–Kutta can have arbitrarily high order. In contrast, the order of A-stable linear multistep methods cannot exceed two. [35]

  5. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations (ODE). [1] The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions.

  6. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This is a cubic equation in y. Solve for y using any method for solving such equations (e.g. conversion to a reduced cubic and application of Cardano's formula). Any of the three possible roots will do.

  7. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    be the general quartic equation we want to solve. Dividing by a 4, provides the equivalent equation x 4 + bx 3 + cx 2 + dx + e = 0, with b = ⁠ a 3 / a 4 ⁠, c = ⁠ a 2 / a 4 ⁠, d = ⁠ a 1 / a 4 ⁠, and e = ⁠ a 0 / a 4 ⁠. Substituting y − ⁠ b / 4 ⁠ for x gives, after regrouping the terms, the equation y 4 + py 2 + qy + r = 0, where

  8. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.

  9. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, John Wiley, ISBN 978-0-471-96758-3. Dahlquist, Germund (1956), "Convergence and stability in the numerical integration of ordinary differential equations", Mathematica Scandinavica , 4 : 33– 53, doi : 10.7146/math.scand.a-10454 .