Ad
related to: entropy calculator machine learning code generator free unlimited scansqrcodeveloper.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Machine learning techniques arise largely from statistics and also information theory. In general, entropy is a measure of uncertainty and the objective of machine learning is to minimize uncertainty. Decision tree learning algorithms use relative entropy to determine the decision rules that govern the data at each node. [34]
More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies [(())] [ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...
In computing, entropy is the randomness collected by an operating system or application for use in cryptography or other uses that require random data. This randomness is often collected from hardware sources (variance in fan noise or HDD), either pre-existing ones such as mouse movements or specially provided randomness generators.
In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
Maximum-entropy random graph models are random graph models used to study complex networks subject to the principle of maximum entropy under a set of structural constraints, [1] which may be global, distributional, or local.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .
A new approach to the problem of entropy evaluation is to compare the expected entropy of a sample of random sequence with the calculated entropy of the sample. The method gives very accurate results, but it is limited to calculations of random sequences modeled as Markov chains of the first order with small values of bias and correlations ...