When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron neutrino - Wikipedia

    en.wikipedia.org/wiki/Electron_neutrino

    The electron neutrino has a corresponding antiparticle, the electron antineutrino (ν e), which differs only in that some of its properties have equal magnitude but opposite sign. One major open question in particle physics is whether neutrinos and anti-neutrinos are the same particle.

  3. Antineutron - Wikipedia

    en.wikipedia.org/wiki/Antineutron

    The antineutron is the antiparticle of the neutron with symbol n. It differs from the neutron only in that some of its properties have equal magnitude but opposite sign.It has the same mass as the neutron, and no net electric charge, but has opposite baryon number (+1 for neutron, −1 for the antineutron).

  4. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  5. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    The antiparticle of an electron is an antielectron, which is almost always called a "positron" for historical reasons. There are six leptons in total; the three charged leptons are called "electron-like leptons", while the neutral leptons are called " neutrinos ".

  6. Positron - Wikipedia

    en.wikipedia.org/wiki/Positron

    The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2 (the same as the electron), and the same mass as an electron.It is the antiparticle (antimatter counterpart) of the electron.

  7. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.

  8. Lepton - Wikipedia

    en.wikipedia.org/wiki/Lepton

    The electron neutrino was simply called the neutrino, as it was not yet known that neutrinos came in different flavours (or different "generations"). Nearly 40 years after the discovery of the electron, the muon was discovered by Carl D. Anderson in 1936. Due to its mass, it was initially categorized as a meson rather than a lepton. [26]

  9. Antiparticle - Wikipedia

    en.wikipedia.org/wiki/Antiparticle

    For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.