Search results
Results From The WOW.Com Content Network
Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity. Diastereomers differ not only in physical properties but also in chemical reactivity — how a compound reacts with others. Glucose and galactose, for instance, are diastereomers. Even though they share the same molar ...
A mixture of equal amounts of each enantiomer, a racemic mixture or a racemate, does not rotate light. [7] [8] [9] Stereoisomers include both enantiomers and diastereomers. Diastereomers, like enantiomers, share the same molecular formula and are also nonsuperposable onto each other; however, they are not mirror images of each other. [10]
Diastereomers are distinct molecular configurations that are a broader category. [3] They usually differ in physical characteristics as well as chemical properties. If two molecules with more than one chiral centre differ in one or more (but not all) centres, they are diastereomers. All stereoisomers that are not enantiomers are diastereomers.
Pure enantiomers also exhibit the phenomenon of optical activity and can be separated only with the use of a chiral agent. In nature, only one enantiomer of most chiral biological compounds, such as amino acids (except glycine, which is achiral), is present. Enantiomers differ by the direction they rotate polarized light: the amount of a chiral ...
One way to separate enantiomers is to chemically convert them into species that can be separated: diastereomers. Diastereomers, unlike enantiomers, have entirely different physical properties—boiling points, melting points, NMR shifts, solubilities—and they can be separated by conventional means such as chromatography or recrystallization.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In stereochemistry, an epimer is one of a pair of diastereomers. [1] The two epimers have opposite configuration at only one stereogenic center out of at least two. [2] All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.
The two enantiomers can be distinguished, for example, by the right-hand rule. This type of isomerism is called axial isomerism. Enantiomers behave identically in chemical reactions, except when reacting with chiral compounds or in the presence of chiral catalysts, such as most enzymes. For this latter reason, the two enantiomers of most chiral ...