Search results
Results From The WOW.Com Content Network
In strong and weak lensing, the mass of the lens is large enough (mass of a galaxy or galaxy cluster) that the displacement of light by the lens can be resolved with a high resolution telescope such as the Hubble Space Telescope. With microlensing, the lens mass is too low (mass of a planet or a star) for the displacement of light to be ...
The Star-Spectroscope of the Lick Observatory in 1898. Designed by James Keeler and constructed by John Brashear.. Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects.
Microlensing techniques have been used to search for planets outside our solar system. A statistical analysis of specific cases of observed microlensing over the time period of 2002 to 2007 found that most stars in the Milky Way galaxy hosted at least one orbiting planet within 0.5 to 10 AU. [28]
In theoretical physics, mirror matter, also called shadow matter or alice matter, is a hypothetical counterpart to ordinary matter that mirrors the properties of ordinary matter but interacts with it only via gravity or weak interaction.
A convex secondary mirror is placed just to the side of the light entering the telescope, and positioned afocally so as to send parallel light on to the tertiary. The concave tertiary mirror is positioned exactly twice as far to the side of the entering beam as was the convex secondary, and its own radius of curvature distant from the secondary.
Space telescopes are used at certain wavelengths where the atmosphere is opaque, or to eliminate noise (thermal radiation from the atmosphere). Optical astronomy is the part of astronomy that uses optical instruments (mirrors, lenses, and solid-state detectors) to observe light from near- infrared to near- ultraviolet wavelengths.
On the other hand, the Spitzer Space Telescope, observing from about 3 μm (0.003 mm) to 180 μm (0.18 mm) uses a mirror (reflecting optics). Also using reflecting optics, the Hubble Space Telescope with Wide Field Camera 3 can observe in the frequency range from about 0.2 μm (0.0002 mm) to 1.7 μm (0.0017 mm) (from ultra-violet to infrared ...
In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). [1]