Ad
related to: tension in a massless rope line with velocity n x 3 cmtemu.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle =).
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
a simple massless force, [citation needed] an oscillator, [citation needed] or; an inertial force (mass and a massless force). [citation needed] Numerous historical reviews of the moving load problem exist. [1] [2] Several publications deal with similar problems. [3] The fundamental monograph is devoted to massless loads. [4]
Diagram 3 shows three rope parts supporting the load W, which means the tension in the rope is W/3. Thus, the mechanical advantage is three-to-one. By adding a pulley to the fixed block of a gun tackle the direction of the pulling force is reversed though the mechanical advantage remains the same, Diagram 3a. This is an example of the Luff tackle.
where is the tension (in Newtons), is the linear density (that is, the mass per unit length), and is the length of the vibrating part of the string. Therefore: the shorter the string, the higher the frequency of the fundamental; the higher the tension, the higher the frequency of the fundamental
In climbing, a Tyrolean traverse is a technique that enables climbers to cross a void between two fixed points, such as between a headland and a detached rock pillar (e.g. a sea stack), or between two points that enable the climbers to cross over an obstacle such as chasm or ravine, or over a fast moving river. [1]
In mathematical physics, the Gordon decomposition [1] (named after Walter Gordon) of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.