Search results
Results From The WOW.Com Content Network
The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
Typically the electrophilic coupling partner (R-X) is an aryl halide, but triflates are also used. Nucleophilic coupling (R'-Y) partners are more diverse. In the Suzuki reaction, boronic esters and boronic acids serve as nucleophilic coupling partners. [1] Expanding the scope of coupling partners is a focus methods development in organic ...
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and the ...
The Lewis acidity of orthoborate esters, as determined by the Gutmann-Beckett method, is relatively low. Trimethyl borate, B(OCH 3) 3, is used as a precursor to boronic esters for Suzuki couplings: [5] Unsymmetrical borate esters are prepared from alkylation of trimethyl borate: [6]
Compounds of the type BR n (OR) 3-n are called borinic esters (n = 2), boronic esters (n = 1), and borates (n = 0). Boronic acids are key to the Suzuki reaction. Trimethyl borate, debatably not an organoboron compound, is an intermediate in sodium borohydride production.
Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general ...
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]