Search results
Results From The WOW.Com Content Network
Glucose + 2 ADP + 2 Pi → 2 ethanol + 2 CO 2 + 2 ATP + 2 H 2 O [38] Alcohol Dehydrogenase. In yeast [39] and many bacteria, alcohol dehydrogenase plays an important part in fermentation: Pyruvate resulting from glycolysis is converted to acetaldehyde and carbon dioxide, and the acetaldehyde is then reduced to ethanol by an alcohol ...
[4] [6] Alcohol dehydrogenase and aldehyde dehydrogenase are present at their highest concentrations (in liver mitochondria). [98] [107] But these enzymes are widely expressed throughout the body, such as in the stomach and small intestine. [2] Some alcohol undergoes a first pass of metabolism in these areas, before it ever enters the ...
Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins.
Tryptophan synthase or tryptophan synthetase is an enzyme (EC 4.2.1.20) that catalyzes the final two steps in the biosynthesis of tryptophan. [1] [2] It is commonly found in Eubacteria, [3] Archaebacteria, [4] Protista, [5] Fungi, [6] and Plantae. [7] However, it is absent from Animalia. [8] It is typically found as an α2β2 tetramer.
Structure of the trp operon. The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. [1]
Tryptophan 2,3-dioxygenase is a heme-containing cytosolic enzyme encoded by gene TDO2. [5] Crystallographic studies of Xanthomonas campestris TD) [13] and Ralstonia metallidurans TDO) [16] have revealed that their structures are essentially identical and are intimately associated homotetrameric enzymes. [17]
Thiamine pyrophosphate (TPP or ThPP), or thiamine diphosphate (ThDP), or cocarboxylase [1] is a thiamine (vitamin B 1) derivative which is produced by the enzyme thiamine diphosphokinase. Thiamine pyrophosphate is a cofactor that is present in all living systems, in which it catalyzes several biochemical reactions.
For this reason, endopeptidases cannot break down peptides into monomers, while exopeptidases can break down proteins into monomers. A particular case of endopeptidase is the oligopeptidase, whose substrates are oligopeptides instead of proteins. They are usually very specific for certain amino acids. Examples of endopeptidases include: