Search results
Results From The WOW.Com Content Network
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *333333 with 6 order-3 mirror intersections. In Coxeter notation can be represented as [6 * ,6], removing two of three mirrors (passing through the hexagon center) in the [6,6] symmetry.
It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling). English mathematician John Conway called it a hextille. The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the square tiling.
Broken down, 3 6; 3 6 (both of different transitivity class), or (3 6) 2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 3 4 .6, 4 more contiguous equilateral triangles and a single regular hexagon.
The snub square tiling is an Archimedean tiling, and as the dual to an Archimedean tiling this form of the Cairo pentagonal tiling is a Catalan tiling or Laves tiling. [14] It is one of two monohedral pentagonal tilings that, when the tiles have unit area, minimizes the perimeter of the tiles.
Square (regular quadrilateral) Tangential quadrilateral; Trapezoid. Isosceles trapezoid; Trapezus; Pentagon – 5 sides; Hexagon – 6 sides Lemoine hexagon; Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides ...
This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. [4] Each vertex has edges evenly spaced around it. Three dimensional analogues of the planigons are called stereohedrons .
(Naming the colors by indices around a vertex (3.4.6.4): 1232.) With edge-colorings there is a half symmetry form (3*3) orbifold notation. The hexagons can be considered as truncated triangles, t{3} with two types of edges. It has Coxeter diagram, Schläfli symbol s 2 {3,6}. The bicolored square can be distorted into isosceles trapezoids.
In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane.There are 2 dodecagons (12-sides) and one triangle on each vertex.. As the name implies this tiling is constructed by a truncation operation applied to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations.