Search results
Results From The WOW.Com Content Network
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]
Note that this contouring grid is one cell smaller in each direction than the original 2D field. For each cell in the contouring grid: Compose the 4 bits at the corners of the cell to build a binary index: walk around the cell in a clockwise direction appending the bit to the index, using bitwise OR and left-shift , from most significant bit at ...
Occupancy Grid Mapping refers to a family of computer algorithms in probabilistic robotics for mobile robots which address the problem of generating maps from noisy and uncertain sensor measurement data, with the assumption that the robot pose is known. Occupancy grids were first proposed by H. Moravec and A. Elfes in 1985.
In numerical analysis, given a square grid in two dimensions, the nine-point stencil of a point in the grid is a stencil made up of the point itself together with its eight "neighbors". It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation.
Schemes defined for scattered data on an irregular grid are more general. They should all work on a regular grid, typically reducing to another known method. Nearest-neighbor interpolation; Triangulated irregular network-based natural neighbor; Triangulated irregular network-based linear interpolation (a type of piecewise linear function)
The animation shows the maze generation steps for a graph that is not on a rectangular grid. First, the computer creates a random planar graph G shown in blue, and its dual F shown in yellow. Second, the computer traverses F using a chosen algorithm, such as a depth-first search, coloring the path red.
The terms "mesh generation," "grid generation," "meshing," " and "gridding," are often used interchangeably, although strictly speaking the latter two are broader and encompass mesh improvement: changing the mesh with the goal of increasing the speed or accuracy of the numerical calculations that will be performed over it.
Adaptive mesh refinement (AMR) changes the spacing of grid points, to change how accurately the solution is known in that region. In the shallow water example, the grid might in general be spaced every few feet—but it could be adaptively refined to have grid points every few inches in places where there are large waves.