Search results
Results From The WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
push 1L (the number one with type long) onto the stack ldc 12 0001 0010 1: index → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, java.lang.invoke.MethodHandle, or a dynamically-computed constant) onto the stack ldc_w 13 0001 0011 2: indexbyte1, indexbyte2 → value
In computer programming, the act of swapping two variables refers to mutually exchanging the values of the variables. Usually, this is done with the data in memory.For example, in a program, two variables may be defined thus (in pseudocode):
Take an array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest number using bubble sort. In each step, elements written in bold are being compared. Three passes will be required; First Pass ( 5 1 4 2 8 ) → ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations. Usually, multi-word compare-and-swap is implemented in software using normal double-wide compare-and-swap operations. [16] The drawback of this approach is a lack of scalability. Persistent compare-and-swap
Test-driven development (TDD) is a way of writing code that involves writing an automated unit-level test case that fails, then writing just enough code to make the test pass, then refactoring both the test code and the production code, then repeating with another new test case.
In computer science, read–modify–write is a class of atomic operations (such as test-and-set, fetch-and-add, and compare-and-swap) that both read a memory location and write a new value into it simultaneously, either with a completely new value or some function of the previous value.