When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    Strain (ε) as a function of time due to constant stress over an extended period for a Class M material. Creep behavior can be split into three main stages. In primary, or transient, creep, the strain rate is a function of time. In Class M materials, which include most pure materials, primary strain rate decreases over time.

  3. Creep-testing machine - Wikipedia

    en.wikipedia.org/wiki/Creep-testing_machine

    Creep is dependent on time so the curve that the machine generates is a time vs. strain graph. The slope of a creep curve is the creep rate dε/dt [citation needed] The trend of the curve is an upward slope. The graphs are important to learn the trends of the alloys or materials used and by the production of the creep-time graph, it is easier ...

  4. Larson–Miller relation - Wikipedia

    en.wikipedia.org/wiki/Larson–Miller_relation

    F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: = / Where r is the creep process rate, A is a constant, R is the universal gas constant, T is the absolute temperature, and is the activation energy for the creep process.

  5. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    When subjected to a step constant stress, viscoelastic materials experience a time-dependent increase in strain. This phenomenon is known as viscoelastic creep. At time , a viscoelastic material is loaded with a constant stress that is maintained for a sufficiently long time period. The material responds to the stress with a strain that ...

  6. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  7. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    The classical creep curve represents the evolution of strain as a function of time in a material subjected to uniaxial stress at a constant temperature. The creep test, for instance, is performed by applying a constant force/stress and analyzing the strain response of the system.

  8. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.

  9. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured. The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units).