Ad
related to: how to find equivalent statements in algebrastudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
This statement expresses the idea "' if and only if '". In particular, the truth value of p ↔ q {\displaystyle p\leftrightarrow q} can change from one model to another. On the other hand, the claim that two formulas are logically equivalent is a statement in metalanguage , which expresses a relationship between two statements p {\displaystyle ...
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or bidirectional implication or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent negated and swapped.
For a third facet, identify every mathematical predicate N with the set T(N) of objects, events, or statements for which N holds true; then asserting the necessity of N for S is equivalent to claiming that T(N) is a superset of T(S), while asserting the sufficiency of S for N is equivalent to claiming that T(S) is a subset of T(N).
The exclusive or is also equivalent to the negation of a logical biconditional, by the rules of material implication (a material conditional is equivalent to the disjunction of the negation of its antecedent and its consequence) and material equivalence. In summary, we have, in mathematical and in engineering notation:
Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
propositional logic, Boolean algebra: The statement is true if and only if A is false. A slash placed through another operator is the same as placed in front. The prime symbol is placed after the negated thing, e.g. ′ [2]