Search results
Results From The WOW.Com Content Network
The temperature depends on the energy released and the heat loss to the sides of the barrel and chamber. As the projectile travels down the barrel, the volume the gas occupies behind the projectile increases. Some energy is lost in deforming the projectile and causing it to spin. There are also frictional losses between the projectile and the ...
Drag makes the projectile turn into the wind, much like a weather vane, keeping the centre of air pressure on its nose. From the shooter’s perspective, this causes the nose of the projectile to turn into the wind and the tail to turn away from the wind.
Transitional ballistics, also known as intermediate ballistics, [1] is the study of a projectile's behavior from the time it leaves the muzzle until the pressure behind the projectile is equalized, so it lies between internal ballistics and external ballistics. [2] [3] [4] [5]
Temperature (including air, ammunition and barrel temperature) [8] Spindrift, [9] an effect caused by the rotation of the bullet; Coriolis effect, [10] caused by the Earth's rotation; Mirage, [11] which causes the shooter to hit high and to the side if there is a little wind; Angle to the target (called "cosine angle"), [12] either up or ...
The formula for calculating the ballistic coefficient for small and large arms projectiles only is as follows: = [2] where: C b,projectile, ballistic coefficient as used in point mass trajectory from the Siacci method (less than 20 degrees). [3] m, mass of bullet
This misconception is due to the metal's fluid-like behavior, which is caused by the massive pressures produced during the detonation of the explosive causing the metal to flow plastically. When used in the anti-tank role, a projectile that uses a shaped-charge warhead is known by the acronym HEAT (high-explosive anti-tank).
According to Newtonian mechanics, if the gun and shooter are at rest initially, the force on the bullet will be equal to that on the gun-shooter. This is due to Newton's third law of motion (For every action, there is an equal and opposite reaction). Consider a system where the gun and shooter have a combined mass m g and the bullet has a mass m b.
Muzzle energy is dependent upon the factors previously listed, and velocity is highly variable depending upon the length of the barrel a projectile is fired from. [2] Also the muzzle energy is only an upper limit for how much energy is transmitted to the target, and the effects of a ballistic trauma depend on several other factors as well.