Search results
Results From The WOW.Com Content Network
CSS animation of Aristotle's wheel paradox. The wheel comprises two concentric circles: the outer one has twice the radius of the inner one and rolls on the lower track. Both circles and tracks are marked with segments of equal length. The inner circle is observed to slip with respect to its track.
The region of the plane between two concentric circles is an annulus, and analogously the region of space between two concentric spheres is a spherical shell. [6] For a given point c in the plane, the set of all circles having c as their center forms a pencil of circles. Each two circles in the pencil are concentric, and have different radii.
First, a large circle is constructed and its circumference is subdivided by 12 diameters into 12 arcs (of 30 degrees each; see regular dodecagon). Next, the radius of this circle is itself subdivided into 12 unit segments (radial units), and a series of concentric circles is constructed, each with radius incremented by one radial unit.
An annulus Illustration of Mamikon's visual calculus method showing that the areas of two annuli with the same chord length are the same regardless of inner and outer radii. [ 1 ] In mathematics , an annulus ( pl. : annuli or annuluses ) is the region between two concentric circles.
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.
A great circle is equidistant to its poles, while a small circle is closer to one pole than the other. Concentric circles are sometimes called parallels, because they each have constant distance to each-other, and in particular to their concentric great circle, and are in that sense analogous to parallel lines in the plane.
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
For every curve of constant width, the minimum enclosing circle of the curve and the largest circle that it contains are concentric, and the average of their diameters is the width of the curve. These two circles together touch the curve in at least three pairs of opposite points, but these points are not necessarily vertices.