Ads
related to: cubic spline excel formula list examples with solutions
Search results
Results From The WOW.Com Content Network
Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in Fortran 77) TinySpline:Open source C-library for splines which implements cubic spline interpolation
Smoothing splines are function estimates, ^ () ... The most familiar example is the cubic smoothing spline, ... means the solution is the "natural" spline interpolant ...
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.
A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural means that the second derivatives of the spline polynomials are zero at the endpoints of the interval of interpolation.
Discrete cubic splines were originally introduced as solutions of certain minimization problems. [1] [2] They have applications in computing nonlinear splines. [1] [3] They are used to obtain approximate solution of a second order boundary value problem. [4] Discrete interpolatory splines have been used to construct biorthogonal wavelets. [5]
Examples of such matrices commonly arise from the discretization of 1D Poisson equation and natural cubic spline interpolation. Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite ; [ 1 ] [ 2 ] for a more precise ...
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.