Ads
related to: finite geometry examples in real life
Search results
Results From The WOW.Com Content Network
Individual examples can be found in the work of Thomas Penyngton Kirkman (1847) and the systematic development of finite projective geometry given by von Staudt (1856). The first axiomatic treatment of finite projective geometry was developed by the Italian mathematician Gino Fano .
The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study.
An arrangement in which the midpoint of all the spheres lie on a single straight line is called a sausage packing, as the convex hull has a sausage-like shape.An approximate example in real life is the packing of tennis balls in a tube, though the ends must be rounded for the tube to coincide with the actual convex hull.
In standard notation, a finite projective geometry is written PG(a, b) where: a is the projective (or geometric) dimension, and b is one less than the number of points on a line (called the order of the geometry). Thus, the example having only 7 points is written PG(2, 2).
In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but ...
Mathematicians can now explain how many people would need to be invited to a party so at least 4 people always know one another. It only took 90 years to solve.
Numerous other constructions of both finite and infinite non-Desarguesian planes are known, see for example Dembowski (1968). All known constructions of finite non-Desarguesian planes produce planes whose order is a proper prime power, that is, an integer of the form p e, where p is a prime and e is an integer greater than 1.
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]