When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    For example, if a teacher has a class arranged in 5 rows of 6 columns and she wants to take a random sample of 5 students she might pick one of the 6 columns at random. This would be an epsem sample but not all subsets of 5 pupils are equally likely here, as only the subsets that are arranged as a single column are eligible for selection.

  3. Latin hypercube sampling - Wikipedia

    en.wikipedia.org/wiki/Latin_hypercube_sampling

    Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of parameter values from a multidimensional distribution. The sampling method is often used to construct computer experiments or for Monte Carlo integration. [1] LHS was described by Michael McKay of Los Alamos National Laboratory in 1979. [1]

  4. Secretary problem - Wikipedia

    en.wikipedia.org/wiki/Secretary_problem

    That is, the interviewer will derive some value from selecting an applicant that is not necessarily the best, and the derived value increases with the value of the one selected. To model this problem, suppose that the n {\displaystyle n} applicants have "true" values that are random variables X drawn i.i.d. from a uniform distribution on [0, 1].

  5. Randomness test - Wikipedia

    en.wikipedia.org/wiki/Randomness_test

    In some cases, data reveals an obvious non-random pattern, as with so-called "runs in the data" (such as expecting random 0–9 but finding "4 3 2 1 0 4 3 2 1..." and rarely going above 4). If a selected set of data fails the tests, then parameters can be changed or other randomized data can be used which does pass the tests for randomness.

  6. Systematic sampling - Wikipedia

    en.wikipedia.org/wiki/Systematic_sampling

    This is random sampling with a system. From the sampling frame, a starting point is chosen at random, and choices thereafter are at regular intervals. For example, suppose you want to sample 8 houses from a street of 120 houses. 120/8=15, so every 15th house is chosen after a random starting point between 1 and 15.

  7. Randomization - Wikipedia

    en.wikipedia.org/wiki/Randomization

    Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1] [2] [3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]

  8. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  9. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    We then generate a random start between 1 and 500 (equal to 1500/3) and count through the school populations by multiples of 500. If our random start was 137, we would select the schools which have been allocated numbers 137, 637, and 1137, i.e. the first, fourth, and sixth schools.