Search results
Results From The WOW.Com Content Network
Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]
In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [ 1 ] They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra .
One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Another property of the orthic triangle, also proven by Fagnano, is that its angle bisectors are the altitudes of the original triangle. [ 1 ] Fagnano also partially solved the problem of finding the geometric median of sets of four points in the Euclidean plane ; this is the point minimizing the sum of its distances to the four given points.