Search results
Results From The WOW.Com Content Network
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br • , the bromine radical.
The Wohl–Ziegler reaction [1] [2] is a chemical reaction that involves the allylic or benzylic bromination of hydrocarbons using an N-bromosuccinimide and a radical initiator. [3] Best yields are achieved with N-bromosuccinimide in carbon tetrachloride solvent. Several reviews have been published. [4] [5]
A chemical glycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. [1] [2] [3] If both the donor and acceptor are sugars, then the product is an oligosaccharide.
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
N-Hydroxysuccinimide (NHS) is an organic compound with the formula (CH 2 CO) 2 NOH. It is a white solid that is used as a reagent for preparing active esters in peptide synthesis. It can be synthesized by heating succinic anhydride with hydroxylamine or hydroxylamine hydrochloride .
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
C 4 H 5 N O 2: Molar mass: 99.089 g·mol −1 Appearance White crystalline powder Density: 1.41 g/cm 3: Melting point: 125 to 127 °C (257 to 261 °F; 398 to 400 K) Boiling point: 287 to 289 °C (549 to 552 °F; 560 to 562 K)
Several reagents can be substituted for bromine. Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can effect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.