When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    Chemoautotrophs can use inorganic energy sources such as hydrogen sulfide, elemental sulfur, ferrous iron, molecular hydrogen, and ammonia or organic sources to produce energy. Most chemoautotrophs are prokaryotic extremophiles, bacteria, or archaea that live in otherwise hostile environments (such as deep sea vents) and are the primary ...

  3. Chemosynthesis - Wikipedia

    en.wikipedia.org/wiki/Chemosynthesis

    Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...

  4. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2] Chemoheterotrophs also obtain the carbon atoms that they need for cellular function from these organic compounds.

  5. Lithoautotroph - Wikipedia

    en.wikipedia.org/wiki/Lithoautotroph

    A lithoautotroph is an organism that derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light, while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]

  6. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    This is the main way that primary producers get energy and make it available to other forms of life. Plants, many corals (by means of intracellular algae), some bacteria (cyanobacteria), and algae do this. During photosynthesis, primary producers receive energy from the sun and use it to produce sugar and oxygen.

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes.

  8. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Fermentation is another process by which cells can extract energy from glucose. It is not a form of cellular respiration, but it does generate ATP, break down glucose, and produce waste products. Fermentation, like aerobic respiration, begins by breaking glucose into two pyruvate molecules.

  9. Metabolism - Wikipedia

    en.wikipedia.org/wiki/Metabolism

    Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...