Search results
Results From The WOW.Com Content Network
The stapedius reflex of the middle ear muscles helps protect the inner ear from damage by reducing the transmission of sound energy when the stapedius muscle is activated in response to sound. The middle ear still contains the sound information in wave form; it is converted to nerve impulses in the cochlea.
Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance. The sound localization mechanisms of the mammalian auditory system have been extensively studied. The auditory system uses several cues for sound source localization, including time difference and level difference (or ...
The eardrum is an airtight membrane, and when sound waves arrive there, they cause it to vibrate following the waveform of the sound. Cerumen (ear wax) is produced by ceruminous and sebaceous glands in the skin of the human ear canal, protecting the ear canal and tympanic membrane from physical damage and microbial invasion. [5]
The Outer ear consists of the pinna or auricle (visible parts including ear lobes and concha), and the auditory meatus (the passageway for sound). The fundamental function of this part of the ear is to gather sound energy and deliver it to the eardrum. Resonances of the external ear selectively boost sound pressure with frequency in the range 2 ...
The perception of auditory signals came as a nervous impulse from the inner ear to the cochlear nuclei of the brainstem, [11] which is the first relay station. In an ascending pathway, various acoustic reflexes and sound localisation are regulated via relay stations.
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
The purpose of this frequency map (known as a tonotopic map) likely reflects the fact that the cochlea is arranged according to sound frequency. The auditory cortex is involved in tasks such as identifying and segregating "auditory objects" and identifying the location of a sound in space. For example, it has been shown that A1 encodes complex ...
The human ear can nominally hear sounds in the range 20 to 20 000 Hz. The upper limit tends to decrease with age; most adults are unable to hear above 16 000 Hz. Under ideal laboratory conditions, the lowest frequency that has been identified as a musical tone is 12 Hz. [6] Tones between 4 and 16 Hz can be perceived via the body's sense of touch.