When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/Hardy–Weinberg_principle

    Length of p, q corresponds to allele frequencies (here p = 0.6, q = 0.4). Then area of rectangle represents genotype frequencies (thus AA : Aa : aa = 0.36 : 0.48 : 0.16 ). The different ways to form genotypes for the next generation can be shown in a Punnett square , where the proportion of each genotype is equal to the product of the row and ...

  3. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    To perform a test cross with C. elegans, place worms with a known recessive genotype with worms of an unknown genotype on an agar plate. Allow the male and hermaphrodite worms time to mate and produce offspring. Using a microscope, the ratio of recessive versus dominant phenotype will elucidate the genotype of the dominant parent. [9]

  4. Skewed X-inactivation - Wikipedia

    en.wikipedia.org/wiki/Skewed_X-inactivation

    It is relatively common in adult females; around 35% of women have a skewed ratio over 70:30, and 7% of women have an extreme skewed ratio of over 90:10. [3] This is of medical significance, due to the potential for the expression of disease genes present on the X chromosome that are normally not expressed due to random X-inactivation.

  5. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Thus, allele R is dominant over allele r, and allele r is recessive to allele R. [4] Dominance is not inherent to an allele or its traits . It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant with a fourth.

  6. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The phenotypic ratio of a cross between two heterozygotes is 9:3:3:1, where 9/16 of the individuals possess the dominant phenotype for both traits, 3/16 of the individuals possess the dominant phenotype for one trait, 3/16 of the individuals possess the dominant phenotype for the other trait, and 1/16 are recessive for both traits. [1]

  7. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes.

  8. Simple Mendelian genetics in humans - Wikipedia

    en.wikipedia.org/wiki/Simple_Mendelian_genetics...

    According to the model of Mendelian inheritance, alleles may be dominant or recessive, one allele is inherited from each parent, and only those who inherit a recessive allele from each parent exhibit the recessive phenotype. Offspring with either one or two copies of the dominant allele will display the dominant phenotype.

  9. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    Since each parent must have a copy of the recessive allele in order to have an affected offspring, the parents are referred to as carriers of the condition. [ 11 ] [ 12 ] [ 13 ] In autosomal conditions, the sex of the offspring does not play a role in their risk of being affected.