Search results
Results From The WOW.Com Content Network
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]: Equation 3.12 It is reasonable to assume that irrotational flow exists in any situation where a large body of fluid is flowing past a solid body. Examples are aircraft in ...
The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).
The Navier–Stokes equations are strictly a statement of the balance of momentum. To fully describe fluid flow, more information is needed, how much depending on the assumptions made. This additional information may include boundary data (no-slip, capillary surface, etc.), conservation of mass, balance of energy, and/or an equation of state.
In aerodynamics, air is assumed to be a Newtonian fluid, which posits a linear relationship between the shear stress (due to internal friction forces) and the rate of strain of the fluid. The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions.
ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by
is the flow velocity. and is the heat flux vector. Because it expresses conservation of total energy, this is sometimes referred to as the energy balance equation of continuous media. The first law is used to derive the non-conservation form of the Navier–Stokes equations. [3]
Some of these hypotheses lead to the Euler equations (fluid dynamics), other ones lead to the Navier–Stokes equations. Additionally, if the flow is assumed compressible an equation of state will be required, which will likely further require a conservation of energy formulation.