Ad
related to: bouncing ball experiment worksheet 1
Search results
Results From The WOW.Com Content Network
The tennis ball going at 1 m/s would then have a relative impact velocity of 2 m/s, which means it would rebound at 2 m/s relative to the basketball, or 3 m/s relative to the floor, and triple its rebound velocity compared to impacting the floor on its own. This implies that the ball would bounce to 9 times its original height.
Newton's cradle simulation with two balls of equal mass; assuming perfect elasticity which implies no energy loss in collisions. The left ball is pulled away which lifts it, and then let go. The left ball swings back as it falls and strikes the right ball, transferring all its momentum to the right ball because they are the same mass.
A bouncing ball captured with a stroboscopic flash at 25 images per second. Each impact of the ball is inelastic, meaning that energy dissipates at each bounce. Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact.
The final x and y velocities components of the first ball can be calculated as: [5] ′ = () + + + (+) ′ = () + + + (+), where v 1 and v 2 are the scalar sizes of the two original speeds of the objects, m 1 and m 2 are their masses, θ 1 and θ 2 are their movement angles, that is, = , = (meaning ...
The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with ...
The billiard arises from studying the behavior of two interacting disks bouncing inside a square, reflecting off the boundaries of the square and off each other. By eliminating the center of mass as a configuration variable, the dynamics of two interacting disks reduces to the dynamics in the Sinai billiard.
Topspin in ball games is defined as spin about a horizontal axis perpendicular to the direction of travel that moves the top surface of the ball in the direction of travel. Under the Magnus effect, topspin produces a downward swerve of a moving ball, greater than would be produced by gravity alone.
During the first 0.05 s the ball drops one unit of distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on. Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 ( metres per second squared , which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet ...