Search results
Results From The WOW.Com Content Network
Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, [1] is the change in the frequency of an existing gene variant in a population due to random chance. [ 2 ] Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation . [ 3 ]
However, Kimura explained this rapid rate of mutation by suggesting that the majority of mutations were neutral, i.e. had little or no effect on the fitness of the organism. Kimura developed mathematical models of the behavior of neutral mutations subject to random genetic drift in biological populations.
This stochastic process is assumed to obey equations describing random genetic drift by means of accidents of sampling, rather than for example genetic hitchhiking of a neutral allele due to genetic linkage with non-neutral alleles. After appearing by mutation, a neutral allele may become more common within the population via genetic drift.
Evolution is a change in the frequency of alleles in a population over time. Mutations occur at random and in the Darwinian evolution model natural selection acts on the genetic variation in a population that has arisen through this mutation. [2] These mutations can be beneficial or deleterious and are selected for or against based on that factor.
The genetic drift caused by a population bottleneck can change the proportional random distribution of alleles and even lead to loss of alleles. The chances of inbreeding and genetic homogeneity can increase, possibly leading to inbreeding depression. Smaller population size can also cause deleterious mutations to accumulate. [3]
Ten simulations of random genetic drift of a single given allele with an initial frequency distribution 0.5 measured over the course of 50 generations, repeated in three reproductively synchronous populations of different sizes. In general, alleles drift to loss or fixation (frequency of 0.0 or 1.0) significantly faster in smaller populations.
Genetic drift causes changes in allele frequency from random sampling due to offspring number variance in a finite population size, with small populations experiencing larger per generation fluctuations in frequency than large populations.
Both genetic drift and genetic draft are random evolutionary processes, i.e. they act stochastically and in a way that is not correlated with selection at the gene in question. Drift is the change in the frequency of an allele in a population due to random sampling in each generation. [9]