Search results
Results From The WOW.Com Content Network
Stirling permutations, permutations of the multiset of numbers 1, 1, 2, 2, ..., k, k in which each pair of equal numbers is separated only by larger numbers, where k = n + 1 / 2 . The two copies of k must be adjacent; removing them from the permutation leaves a permutation in which the maximum element is k − 1 , with n positions into ...
The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!
In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
2.3 Trigonometric, inverse ... hyperbolic, and inverse hyperbolic functions relationship. 2.4 Modified-factorial denominators. 2.5 Binomial ... Download as PDF ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators . [ 73 ] It is also included in scientific programming libraries such as the Python mathematical functions module [ 74 ] and the Boost C++ library . [ 75 ]
Before performing a Yates analysis, the data should be arranged in "Yates' order". That is, given k factors, the k th column consists of 2 (k - 1) minus signs (i.e., the low level of the factor) followed by 2 (k - 1) plus signs (i.e., the high level of the factor). For example, for a full factorial design with three factors, the design matrix is