Search results
Results From The WOW.Com Content Network
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
When converting oil density to specific gravity using the above definition, it is important to use the correct density of water, according to the standard conditions used when the measurement was made. The official density of water at 60 °F according to the 2008 edition of ASTM D1250 is 999.016 kg/m 3. [2] The 1980 value is 999.012 kg/m 3. [3]
The Twaddell scale is a hydrometer scale used for measuring the specific gravity of liquids relative to water. On this scale, a specific gravity of 1.000 is reported as 0, and a specific gravity of 2.000 is reported as 200. [1]
Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane. Thus, the system could be understood as representing a practical spectrum of the density of liquids between −100 and 100, with values near 0 being the approximate density of water.
The clear cut definition of light and heavy crude varies because the classification is based more on practical grounds than theoretical. The New York Mercantile Exchange (NYMEX) defines light crude oil for domestic U.S. oil as having an API gravity between 37° API (840 kg/m 3) and 42° API (816 kg/m 3), while it defines light crude oil for non-U.S. oil as being between 32° API (865 kg/m 3 ...
The API separator is a gravity separation device designed using Stokes' law principles that define the rise velocity of oil droplets based on their density, size and water properties. The design of the separator is based on the specific gravity difference between the oil and the wastewater because that difference is much smaller than the ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...