When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.

  3. Signed overpunch - Wikipedia

    en.wikipedia.org/wiki/Signed_overpunch

    The C language has no provision for zoned decimal. The IBM ILE C/C++ compiler for System i provides functions for conversion between int or double and zoned decimal: [8] QXXDTOZ() — Convert Double to Zoned Decimal; QXXITOZ() — Convert Integer to Zoned Decimal; QXXZTOD() — Convert Zoned Decimal to Double; QXXZTOI() — Convert Zoned ...

  4. scanf - Wikipedia

    en.wikipedia.org/wiki/Scanf

    %d : Scan an integer as a signed decimal number. %i : Scan an integer as a signed number. Similar to %d, but interprets the number as hexadecimal when preceded by 0x and octal when preceded by 0. For example, the string 031 would be read as 31 using %d, and 25 using %i. The flag h in %hi indicates conversion to a short and hh conversion to a char.

  5. Unum (number format) - Wikipedia

    en.wikipedia.org/wiki/Unum_(number_format)

    Fully integrated with C/C++ types and automatic conversions. Supports full C++ math library (native and conversion to/from IEEE). Runtime integrations: GNU Utils, OpenBLAS, CBLAS. Application integrations: in progress. Compiler support extended: C/C++, G++, GFortran & LLVM (in progress). IBM-TACC. Jianyu Chen. Specific-purpose FPGA 32 Yes 16 ...

  6. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Additionally, POSIX includes ssize_t, which is a signed integer type of the same width as size_t. ptrdiff_t is a signed integer type used to represent the difference between pointers. It is guaranteed to be valid only against pointers of the same type; subtraction of pointers consisting of different types is implementation-defined.

  7. Sign bit - Wikipedia

    en.wikipedia.org/wiki/Sign_bit

    In computer science, the sign bit is a bit in a signed number representation that indicates the sign of a number. Although only signed numeric data types have a sign bit, it is invariably located in the most significant bit position, [1] so the term may be used interchangeably with "most significant bit" in some contexts. Almost always, if the ...

  8. Signedness - Wikipedia

    en.wikipedia.org/wiki/Signedness

    For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).

  9. Sign extension - Wikipedia

    en.wikipedia.org/wiki/Sign_extension

    If the source of the operation is an unsigned number, then zero extension is usually the correct way to move it to a larger field while preserving its numeric value, while sign extension is correct for signed numbers. In the x86 and x64 instruction sets, the movzx instruction ("move with zero extension") performs this function.