When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple-criteria decision analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-criteria_decision...

    In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).

  3. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  4. MoSCoW method - Wikipedia

    en.wikipedia.org/wiki/MoSCoW_method

    The MoSCoW method is a prioritization technique used in management, business analysis, project management, and software development to reach a common understanding with stakeholders on the importance they place on the delivery of each requirement; it is also known as MoSCoW prioritization or MoSCoW analysis.

  5. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    By splitting the data into multiple parts, we can check if an analysis (like a fitted model) based on one part of the data generalizes to another part of the data as well. [144] Cross-validation is generally inappropriate, though, if there are correlations within the data, e.g. with panel data . [ 145 ]

  6. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Exploratory data analysis is an analysis technique to analyze and investigate the data set and summarize the main characteristics of the dataset. Main advantage of EDA is providing the data visualization of data after conducting the analysis.

  7. Data envelopment analysis - Wikipedia

    en.wikipedia.org/wiki/Data_envelopment_analysis

    Data envelopment analysis (DEA) is a nonparametric method in operations research and economics for the estimation of production frontiers. [1] DEA has been applied in a large range of fields including international banking, economic sustainability, police department operations, and logistical applications [2] [3] [4] Additionally, DEA has been used to assess the performance of natural language ...

  8. Predictive mean matching - Wikipedia

    en.wikipedia.org/wiki/Predictive_mean_matching

    Predictive mean matching (PMM) [1] is a widely used [2] statistical imputation method for missing values, first proposed by Donald B. Rubin in 1986 [3] and R. J. A. Little in 1988. [ 4 ] It aims to reduce the bias introduced in a dataset through imputation, by drawing real values sampled from the data. [ 5 ]

  9. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.