Search results
Results From The WOW.Com Content Network
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
A Stirling cycle is like an Otto cycle, except that the adiabats are replaced by isotherms. It is also the same as an Ericsson cycle with the isobaric processes substituted for constant volume processes. TOP and BOTTOM of the loop: a pair of quasi-parallel isothermal processes; LEFT and RIGHT sides of the loop: a pair of parallel isochoric ...
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
In this particular example, processes 1 and 3 are isothermal, whereas processes 2 and 4 are isochoric. The PV diagram is a particularly useful visualization of a quasi-static process, because the area under the curve of a process is the amount of work done by the system during that process.
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
The expansion space is heated externally, and the gas undergoes near-isothermal expansion. 270° to 0°, near-constant-volume (or near-isometric or isochoric) heat removal. The gas is passed through the regenerator, thus cooling the gas, and transferring heat to the regenerator for use in the next cycle. 0° to 90°, pseudo-isothermal compression.
Some specific values of n correspond to particular cases: = for an isobaric process, = + for an isochoric process. In addition, when the ideal gas law applies: = for an isothermal process,
Carnot engine diagram (modern) - where an amount of heat Q H flows from a high temperature T H furnace through the fluid of the "working body" (working substance) and the remaining heat Q C flows into the cold sink T C, thus forcing the working substance to do mechanical work W on the surroundings, via cycles of contractions and expansions.