Ads
related to: what are indices in math definition geometry worksheet 1 5a angle relationships
Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
The Hodge index theorem was a result on the intersection number theory for curves on an algebraic surface: it determines the signature of the corresponding quadratic form. This result was sought by the Italian school of algebraic geometry , but was proved by the topological methods of Lefschetz .
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
The row and column indices of nonwhite cells are the related elements, while the different colors, other than light gray, indicate the equivalence classes (each light gray cell is its own equivalence class). In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive.
A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.