Search results
Results From The WOW.Com Content Network
For such a double limit to exist, this definition requires the value of f approaches L along every possible path approaching (p, q), excluding the two lines x = p and y = q. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals L, then the multiple limit exists and also equals L. The ...
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
Probably the most interesting part of this theorem is that the Cauchy condition implies the existence of the limit: this is indeed related to the completeness of the real line. The Cauchy criterion can be generalized to a variety of situations, which can all be loosely summarized as "a vanishing oscillation condition is equivalent to convergence".
Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.
in an essential discontinuity, oscillation measures the failure of a limit to exist. This definition is useful in descriptive set theory to study the set of discontinuities and continuous points – the continuous points are the intersection of the sets where the oscillation is less than ε (hence a G δ set ) – and gives a very quick proof ...
If the limit exists for all , then one says that is Gateaux differentiable at . The limit appearing in ( 1 ) is taken relative to the topology of Y . {\displaystyle Y.} If X {\displaystyle X} and Y {\displaystyle Y} are real topological vector spaces, then the limit is taken for real τ . {\displaystyle \tau .}
For limit β: V β = ∪ α < β V α. That is, V β is the union of the preceding V α. Zermelo worked with models of the form V κ where κ is a cardinal. The classes of the model are the subsets of V κ, and the model's ∈-relation is the standard ∈-relation. The sets of the model are the classes X such that X ∈ V κ.
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...