Search results
Results From The WOW.Com Content Network
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. The NADW is not the deepest water layer in the Atlantic Ocean; the Antarctic bottom water (AABW) is always the densest, deepest ocean layer in any basin deeper than 4,000 metres (2.5 mi). [27]
Thermohaline_Circulation_using_Improved_Flow_Field.ogv (Ogg Theora video file, length 2 min 47 s, 640 × 216 pixels, 697 kbps, file size: 13.86 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The adjective thermohaline derives from thermo-referring to temperature and -haline referring to salt content, factors which together determine the density of seawater. The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
Path of the thermohaline circulation. Purple paths represent deep-water currents, while blue paths represent surface currents. A female warty squid (Moroteuthis ...
Before the discovery of the Tasman Outflow, research on the thermohaline circulation in the Southern Hemisphere was mainly focused on two other routes. One of them is known as the cold route, which moves through the Drake Passage and transports cold water deep in the ocean around Antarctica into the Pacific and Indian Ocean.
Thermohaline circulation transports not only massive volumes of warm and cold water across the planet, but also dissolved oxygen, dissolved organic carbon and other nutrients such as iron. [2] Thus, both halves of the circulation have a great effect on Earth's energy budget and oceanic carbon cycle , and so play an essential role in the Earth's ...
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.