When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    The next, "corrector" step refines the initial approximation by using the predicted value of the function and another method to interpolate that unknown function's value at the same subsequent point. Predictor–corrector methods for solving ODEs

  3. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    The inequalities then follow easily by the Pythagorean theorem. Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}

  4. Zeller's congruence - Wikipedia

    en.wikipedia.org/wiki/Zeller's_congruence

    These formulas are based on the observation that the day of the week progresses in a predictable manner based upon each subpart of that date. Each term within the formula is used to calculate the offset needed to obtain the correct day of the week. For the Gregorian calendar, the various parts of this formula can therefore be understood as follows:

  5. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.

  6. Bernoulli's inequality - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_inequality

    Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for r ∈ { 0 , 1 } {\displaystyle r\in \{0,1\}} ,

  7. Wald's equation - Wikipedia

    en.wikipedia.org/wiki/Wald's_equation

    Then S N is identically equal to zero, hence E[S N] = 0, but E[X 1] = ⁠ 1 / 2 ⁠ and E[N] = ⁠ 1 / 2 ⁠ and therefore Wald's equation does not hold. Indeed, the assumptions , , and are satisfied, however, the equation in assumption holds for all n ∈ except for n = 1.

  8. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.

  9. Bernstein inequalities (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Bernstein_inequalities...

    In probability theory, Bernstein inequalities give bounds on the probability that the sum of random variables deviates from its mean. In the simplest case, let X 1, ..., X n be independent Bernoulli random variables taking values +1 and −1 with probability 1/2 (this distribution is also known as the Rademacher distribution), then for every positive ,