Search results
Results From The WOW.Com Content Network
The vector projection of a vector on a nonzero vector is defined as [note 1] = , , , where , denotes the inner product of the vectors and . This means that proj u ( v ) {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} is the orthogonal projection of v {\displaystyle \mathbf {v} } onto the line spanned by u ...
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.
Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.